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An efficient stereoselective total synthesis of (�)-pyrenophorol 1 is described. The key steps involved in
this synthesis are hydrolytic kinetic resolution (HKR), MacMillan a-hydroxylation, Horner–Wadsworth–
Emmons (HWE) reaction, and Mitsunobu cyclization.
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The family of macrodiolide antibiotics consists of two classes of
natural compounds displaying interesting biological properties.1

The first class consists of 16-membered macrocycles with C2 sym-
metry, such as pyrenophorol 1, pyrenophorin 2, tetrahydropyrenop-
horol 42, and vermiculin 53. The macrolide dilactone pyrenophorol 1
was originally isolated from Byssochlamys niveah4a and Stemphylium
radicinum.4b Subsequently, the diolide 1 was also isolated from the
imperfect fungus Alternaria alternata and was named as helmidiol5

which exhibits pronounced anthelmintic properties.5,6 Pyrenopho-
rol 1 was moderately active against the fungus Microbotryum viola-
ceum.2 (�)-Pyrenophorin 27 is an anti-fungal antibiotic produced by
the plant pathogenic fungi Pyrenophora avenae and Stemphylium
radicinum, which is closely related structurally to (�)-pyrenophorol
1. Colletallol 3 is a 14-membered macrodiolide which has been iso-
lated from culture filtrates of the plant pathogen Colletotrichum
capcisi.8 The natural isomer of pyrenophorol was synthesized by
Kibayashi and Machinaga9 and by Zwanenburg and co-workers10

by means of two successive esterifications. The (5R,8S,13R,16S)-iso-
mer of pyrenophorol was also synthesized by Le Floc’h and
Amigoni.11

The promising biological activity and the unique structure of
this family of macrolactones make them attractive synthetic tar-
gets (Fig. 1).

In continuation of our interest on the total synthesis of biolog-
ically active natural products, we herein report the total synthesis
of (�)-pyrenophorol 1 utilizing the Jacobsen’s hydrolytic kinetic
resolution and the MacMillan a-hydroxylation for the creation of
ll rights reserved.

: 91 40 27160512.
two stereogenic centers. Finally, an intermolecular Mitsunobu
cyclization strategy was used for the construction of 16-membered
macrolide.

In our retrosynthetic analysis (Scheme 1), we envisaged that the
construction of macrolide 1 could be achieved from the key inter-
mediate c-hydroxy-a,b-unsaturated ester 15. This enoate interme-
diate could be synthesized from (S)-1,5-hexanediol 13 by using
MacMillan a-hydroxylation and Horner–Wadsworth–Emmons
(HWE) reaction. Compound 13 could in turn be obtained from
1,6-hexanediol by means of a Jacobsen’s hydrolytic kinetic resolu-
tion process (Scheme 1).

Accordingly (Scheme 2), the selective protection of 1,6-hexane-
diol with benzyl bromide in the presence of NaH and TBAI gave
monobenzyl ether 612, which in turn was transformed into the iodo
compound 7. This was then treated with t-BuOK in THF to give the
5-hexen-1-ol 8 in good yield. The resulting olefin 8 was treated
with m-chloroperoxybenzoic acid (MCPBA) to give the racemic oxi-
rane 9. Compound 9 was hydrolyzed employing (R,R)-Salen-Co-
(OAc) Jacobsen’s catalyst13 to give the chiral epoxide 10. The epox-
ide 10 was reduced with lithium aluminum hydride to generate
the secondary alcohol 11 (97% ee, by HPLC analysis) in good yield,
which was protected as its tert-butyldimethylsilyl ether 12. Re-
moval of benzyl group with carbon-supported palladium afforded
primary alcohol 13 in 92% yield. Oxidation of compound 13 under
Swern oxidation conditions14 gave the corresponding aldehyde 14.
Treatment of aldehyde 14 with D-proline and nitrosobenzene gave
an intermediate a-oxyamino aldehyde with high levels of enanti-
oselectivity15,16 by means of a-oxidation. Olefination using Horn-
er–Wadsworth–Emmons conditions followed by cleavage of the
aminoxy bond gave the c-hydroxy-a,b-unsaturated ester 1517
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Figure 1. Pyrenophorol 1, pyrenophorin 2, colletallol 3, tetrahydropyrenophorol 4, and vermiculin 5
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Scheme 1. Retrosynthetic analysis of (�)-pyrenophorol 1.
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Scheme 2. Reagents and conditions: (a) NaH, TBAI, BnBr, DMF, 0 �C–rt, 6 h, 82%; (b) I2, imidazole, TPP, THF, 0 �C–rt, 1 h, 98%; (c) t-BuOK, THF, 0 �C–rt, 3 h, 90%; (d) MCPBA,
CH2Cl2, 2 h, rt, 84%; (e) (R,R)-Salen-Co-(OAc)(0.45 mol %), H2O, rt, 12 h, 45%; (f) LAH, THF, 0 �C–rt, 30 min, 95%; (g) TBDMSCl, imidazole, CH2Cl2, 0 �C–rt, 1 h, 96%; (h) 10% Pd/C,
H2, EtOAc, rt, 10 h, 92%; (i) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C, 1 h, 80%; (j) nitrosobenzene (1.0 equiv), D-proline (0.4 equiv), DMSO, 20 �C, 25 min, then
triethylphosphonoacetate, DBU, LiCl, 0 �C, 15 min, then MeOH, NH4Cl, Cu(OAc)2, 24 h, 55% (one pot); (k) 2,3-dihydropyran, CSA, CH2C12, rt, 1 h, 86%; (l) 20% aq NaOH,
MeOH, rt, 30 min, 85%; (m) Bu4NF, THF, 80 �C, 2 h, 90%; (n) Ph3P, DEAD, toluene–THF (10:1), �25 �C, 10 h; 58%; (o) TsOH–H2O, MeOH, rt, 30 min, 98%.
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(95% ee, by HPLC analysis). After protecting the secondary alcohol
of enoate as the tetrahydropyranyl ether, the ester was hydrolyzed
under basic aqueous conditions and then desilylated to give the
hydroxy carboxylic acid 18. Finally, compound 18 was subjected
to the Mitsunobu cyclization by Gerlach’s procedure18 for the mac-
rolactonization to take place with complete inversion of chirality at
C-4 to furnish 1919 in 58% yield. Removal of THP group (TsOH,
MeOH) gave the target macrolide 1 in 98% yield as a white solid,
mp 136–137 �C; ½a�25

D �3.2 (c 0.25, acetone) {lit.4a mp 135 �C;
½a�20

D �3.0 (c 1.0, acetone)}, the analytical and spectral data of the
compound 1 were in good agreement with the literature. 20

In summary, we have developed an efficient route for the syn-
thesis of pyrenophorol starting from readily available 1,6-hexane-
diol. The synthetic strategy is based on the facile tandem
MacMillan a-hydroxylation and HWE reaction for the construction
of key intermediate, that is, c-hydroxy-a,b-unsaturated ester in a
single step, which allows the preparation of target molecule in a
short and efficient route.
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